The module "mdeal" of the Mastrave modelling library
Copyright and license notice of the function mdeal
Copyright © 2007,2008,2009,2010,2011,2013 Daniele de Rigo
The file mdeal.m is part of Mastrave.
Mastrave is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
Mastrave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with Mastrave. If not, see http://www.gnu.org/licenses/.
Function declaration
[ ... ] = mdeal( values , block_size = [] , dim = 'columns' , fitting_mode = '--check' , groups = [] , groups_dim = [] )
Description
Utility to extend the ability of the function @deal to assign multiple output variables when a single input matrix or a single multidimensional array (md-array) is provided. Instead of copying the entire input argument values to each output, this utility split values in a partition of blocks (sub-matrices or sub md-arrays) whose concatenation along dim is values . The size along dim of each block of values is defined by the vector block_size . In case the sum of block_size does not equal the size along dim of values , the fitting_mode argument can be used to define the exact splitting of values .
This utility does not support the behavior of the standard function @deal when passing more thagroun one input argument. If you need to dispatch multiple input variables to multiple output ones, you should use directly the function @deal .
Input arguments
values ::numeric:: Numeric vector, matrix or multidimensional-array. block_size ::vector,numel:: Size of the blocks of values to be returned one per output argument. The sizes are computed along dim and are expected to enable the creation of a partition of sub-matrices. This implies that block_size must sum to the size of values along the dimension dim . dim ::scalar_index|string:: Dimension along which to split values into blocks (default: 'columns'). In case a string is passed, valid options are: option │ meaning ───────────────┼──────────────────────────────── 'rows' │ split values along rows. ───────────────┼──────────────────────────────── 'columns' │ split values along columns. fitting_mode ::string:: Policy to adopt when selecting the size of each output variable (default: '--check'). Valid options are: option │ meaning ───────────────┼──────────────────────────────── '--check' │ Check whether block_size sum │ equals the number of values │ elements along the dimension │ dim . │ If not, an error is thrown. ───────────────┼──────────────────────────────── '--fit-all' │ Adapt block_size values to │ be considered weights driving │ the size of each output │ variable. values elements │ will be always entirely split │ into output arguments even if │ block_size sum doesn't equal │ the size of values along the │ dimension dim . ───────────────┼──────────────────────────────── '--fit-head' │ Ensure the first output │ variables have their size │ corresponding to the first │ elements of block_size even │ if block_size sum does not │ equal the size of values │ along the dimension dim . │ Last output arguments adapt │ their size to ensure all │ elements of values are │ retuned in some output │ variable. ───────────────┼──────────────────────────────── '--fit-tail' │ Ensure the last output │ variables have their size │ corresponding to the last │ elements of block_size even │ if block_size sum does not │ equal the size of values │ along the dimension dim . │ First output arguments adapt │ their size to ensure all │ elements of values are │ retuned in some output │ variable. groups ::finite:: Optional argument (default: []) to permute the elements of values along the dimension groups_dim and split values not only in blocks along the dimension dim but also in homogeneous groups along the dimension groups_dim . The groups are identified by associating the i-th group to the i-th unique value of groups so that the set of repeated instances of the i-th value within groups is the i-th group. values is permuted by separating all the elements along the dimension groups_dim whose position is the position of an element in the first group, then repeating the procedure with the elements associated with the second group, and so on. groups_dim ::scalar_index|empty:: Optional argument (default: []) defining the dimension along which to permute and split the elements of values in homogeneous groups.
Example of usage
% Motivational example: quick implementation of random walks [ x, y ] = mdeal( cumsum( randn( 1000, 10 ) ) ); figure(1); plot( x, y ) [ x, y, z ] = mdeal( cumsum( randn( 1000, 15 ) ) ); figure(2); plot3( x, y, z ) % Straightforward cases: input number of columns (rows) % is an exact multiple of the number of output variables siz = [ 1 3 ] M0 = mat2multi( 1:prod(siz) , 2 , siz ); [M1, M2, M3] = mdeal( M0 ) siz = [ 4 3 ] M0 = mat2multi( 1:prod(siz) , 2 , siz ); [M1, M2, M3] = mdeal( M0 ) siz = [ 6 5 ] M0 = mat2multi( 1:prod(siz) , 2 , siz ); [M1, M2, M3] = mdeal( M0 , [] , 1 ) % Automatic or user-defined balancing in case the input number % of columns (rows, nth-dimension size) is not an exact multiple % of the number of output variables. siz = [ 1 7 ] M0 = mat2multi( 1:prod(siz) , 2 , siz ); [M1, M2, M3] = mdeal( M0 ) [M1, M2, M3] = mdeal( M0 , [] ) [M1, M2, M3] = mdeal( M0 , [1 0 6] ) siz = [ 4 7 ] M0 = mat2multi( 1:prod(siz) , 2 , siz ); [M1, M2, M3] = mdeal( M0 ) [M1, M2, M3] = mdeal( M0 , [] ) [M1, M2, M3] = mdeal( M0 , [] , 'columns' ) [M1, M2, M3] = mdeal( M0 , [] , 2 ) [M1, M2, M3] = mdeal( M0 , [] , 'rows' ) [M1, M2, M3] = mdeal( M0 , [] , 1 ) % Support for sparse matrices. M0 = sparse( M0 ); [M1, M2, M3] = mdeal( M0 ) [M1, M2, M3] = mdeal( M0 , [] ) [M1, M2, M3] = mdeal( M0 , [] , 'columns' ) [M1, M2, M3] = mdeal( M0 , [] , 2 ) [M1, M2, M3] = mdeal( M0 , [] , 'rows' ) [M1, M2, M3] = mdeal( M0 , [] , 1 ) % @mdeal can manage multidimensional arrays. siz = [ 4 7 3 ] d = 2; M0 = mat2multi( 1:prod(siz) , d , siz ); [M1, M2, M3] = mdeal( M0 ) [M1, M2, M3] = mdeal( M0 , [] ) [M1, M2, M3] = mdeal( M0 , [] , d ) [M1, M2, M3] = mdeal( M0 , [1 0 6] , d ) d = 1; M0 = mat2multi( 1:prod(siz) , d , siz ); [M1, M2, M3] = mdeal( M0 , [] , d ) [M1, M2, M3] = mdeal( M0 , [1 1 2] , d ) d = 3; M0 = mat2multi( 1:prod(siz) , d , siz ); [M1, M2, M3] = mdeal( M0 , [] , d ) [M1, M2, M3] = mdeal( M0 , [0 1 2] , d ) % correctness test: isequal( M0 , cat( d , M1 , M2 , M3 ) ) % using different values for 'fitting_mode' siz = [ 7 4 ] M0 = mat2multi( 1:prod(siz) , 2 , siz ); [M1, M2, M3] = mdeal( M0 , [] ) [M1, M2, M3] = mdeal( M0 , [2 1 1] ) [M1, M2, M3] = mdeal( M0 , [2 0 1] , 2 , '--fit-all' ) [M1, M2, M3] = mdeal( M0 , [2 0 1] , 2 , '--fit-head' ) [M1, M2, M3] = mdeal( M0 , [2 0 1] , 2 , '--fit-tail' ) [M1, M2, M3] = mdeal( M0 , [2 3 9] , 2 , '--fit-all' ) [M1, M2, M3] = mdeal( M0 , [2 3 9] , 2 , '--fit-head' ) [M1, M2, M3] = mdeal( M0 , [2 3 9] , 2 , '--fit-tail' ) % Motivational example (advanced): quick subdivision in training % and validation sets for a multivariate regression N = 100 % Let us suppose M is a dataset loaded from file, composed by three % columns of values representing measures of three quantities. % If the third quantity is supposed to be correlated and causally % dependent from the first two quantities, it could be interesting % to model its dependency from them. % A linear and a quadratic model are compared by repeating the % model training with several subsets of data and by validating % the model generalization each time with the unused subset of % data. M = rand(N,2); M( :, 3 ) = M(:,1:2).^1.5*[2;3] .*( 1 + randn(N,1)/5 ); n_subtrain = 100; training_error_1 = zero( n_subtrain , 1 )*nan; validation_error_1 = zero( n_subtrain , 1 )*nan; training_error_2 = zero( n_subtrain , 1 )*nan; validation_error_2 = zero( n_subtrain , 1 )*nan; for i=1:n_subtrain % Training set: x, y, z (about 70% of the data) % Validation set: X, Y, Z (about 30% of the data) [x,X,y,Y,z,Z] = mdeal( M, [], 2, '--check', rand(N,1)>.7, 1); % Linear model. param = [x y]\z; approximated_z = [x y]*param; predicted_Z = [X Y]*param; training_error_1(i) = mean( ( approximated_z - z ).^2 )^.5; validation_error_1(i) = mean( ( predicted_Z - Z ).^2 )^.5; % Quadratic model. param = [x y x.^2 y.^2]\z; approximated_z = [x y x.^2 y.^2]*param; predicted_Z = [X Y X.^2 Y.^2]*param; training_error_2(i) = mean( ( approximated_z - z ).^2 )^.5; validation_error_2(i) = mean( ( predicted_Z - Z ).^2 )^.5; end subplot( 2, 2, 1 ); title('trainig: linear m.') hist( training_error_1 , n_subtrain^.5 ) subplot( 2, 2, 2 ); title('trainig: quadratic m.') hist( training_error_2 , n_subtrain^.5 ) subplot( 2, 2, 3 ); title('validation: linear m.') hist( validation_error_1 , n_subtrain^.5 ) subplot( 2, 2, 4 ); title('validation: quadratic m.') hist( validation_error_2 , n_subtrain^.5 )
See also: score, mat2multi, multi2mat Keywords: multidimensional-array, multiple variables, sub-matrices Version: 0.4.5
Support
The Mastrave modelling library is committed to provide reusable and general - but also robust and scalable - modules for research modellers dealing with computational science. You can help the Mastrave project by providing feedbacks on unexpected behaviours of this module. Despite all efforts, all of us - either developers or users - (should) know that errors are unavoidable. However, the free software paradigm successfully highlights that scientific knowledge freedom also implies an impressive opportunity for collectively evolve the tools and ideas upon which our daily work is based. Reporting a problem that you found using Mastrave may help the developer team to find a possible bug. Please, be aware that Mastrave is entirely based on voluntary efforts: in order for your help to be as effective as possible, please read carefully the section on reporting problems. Thank you for your collaboration.